| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 
 | """Glossary:
 b: batch size                       (`B` in Mamba paper [1] Algorithm 2)
 l: sequence length                  (`L` in [1] Algorithm 2)
 d or d_model: hidden dim
 n or d_state: latent state dim      (`N` in [1] Algorithm 2)
 expand: expansion factor            (`E` in [1] Section 3.4)
 d_in or d_inner: d * expand         (`D` in [1] Algorithm 2)
 A, B, C, D: state space parameters  (See any state space representation formula)
 (B, C are input-dependent (aka selective, a key innovation in Mamba); A, D are not)
 Δ or delta: input-dependent step size
 dt_rank: rank of Δ                  (See [1] Section 3.6 "Parameterization of ∆")
 """
 
 
 import math
 import json
 from typing import Union
 import torch
 import torch.nn as nn
 import torch.nn.functional as F
 import einops
 from dataclasses import dataclass
 
 @dataclass
 class ModelArgs:
 d_model: int
 n_layer: int
 vocab_size: int
 d_state: int = 16
 expand: int = 2
 dt_rank: Union[int, str] = 'auto'
 d_conv: int = 4
 pad_vocab_size_multiple: int = 8
 conv_bias: bool = True
 bias: bool = False
 
 def __post__init__(self):
 self.d_inner = int(self.expand * self.d_model)
 
 if self.dt_rank == 'auto':
 self.dt_rank = math.ceil(self.d_model / 16)
 
 if self.vocab_size % self.pad_vocab_size_multiple != 0:
 self.vocab_size += (self.pad_vocab_size_multiple
 - self.vocab_size % self.pad_vocab_size_multiple)
 
 
 """
 MabmbaBlock是最基本的Mamba模块,他实现的就是单个的MambaBlock
 """
 class MambaBlock(nn.Module):
 def __init__(self, args: ModelArgs):
 super().__init__()
 self.args = args
 
 self.linear1(args.d_inner, args.d_model, bias=args.bias)
 self.linear2(args.d_inner, args.d_model, bias=args.bias)
 
 self.conv1d = nn.Conv1d(
 in_channels=args.d_inner,
 out_channels=args.d_inner,
 bias=args.conv_bias,
 kernel_size=args.d_conv,
 groups=args.d_inner,
 padding=args.d_conv - 1
 )
 
 self.x2Delta = nn.Linear(args.d_inner, args.dt_rank, bias=False)
 self.x2B = nn.Linear(args.d_inner, args.d_state, bias=False)
 self.x2C = nn.Linear(args.d_inner, args.d_state, bias=False)
 
 self.dt_proj = nn.Linear(args.dt_rank, args.d_inner, bias=False)
 
 A = einops.repeat(torch.arange(1, args.d_state + 1), 'n -> d n', d=args.d_inner)
 self.A_log = nn.Parameter(torch.log(A))
 self.D = nn.Parameter(torch.ones(args.d_inner))
 self.out_proj = nn.Linear(args.d_inner, args.d_model, bias=args.bias)
 
 
 def forward(self, x):
 (b, l, d) = x.shape
 res = self.linear1(x)
 x = self.linear2(x)
 
 x = einops.rearrange(x, 'b l d_in -> b d_in l')
 
 x = self.conv1d(x)
 x =einops.rearrange(x, 'b d_in l -> b l d_in')
 x = F.silu(x)
 
 y = self.ssm(x)
 y = y * F.silu(res)
 output = self.out_proj(y)
 return output
 
 def ssm(self, x):
 (d_in ,n) = self.A_log.shape
 A = - torch.exp(self.A_log.float())
 D = self.D.float()
 
 delta = self.x2Delta(x)
 B = self.x2B(x)
 C = self.x2C(x)
 delta = F.softplus(self.dt_proj(delta))
 y = self.selective_scan(x, delta, A, B, C, D)
 
 return y
 
 def selective_scan(self, x, delta, A, B, C, D):
 (b, l, d_in) = x.shape
 n = A.shape[1]
 A_bar = torch.exp(einops.einsum(delta, A, 'b l d_in, d_in n -> b l d_in n'))
 B_bar_x = einops.einsum(delta, B, x, 'b l d_in, b l n, b l d_in -> b l d_in n')
 
 
 """
 下面这段没有用并行算法,实现起来也应该不复杂
 我试着以后有时间实现一下
 """
 h = torch.zeros((b, d_in, n), device=A_bar.device)
 ys = []
 for i in range(l):
 h = A_bar[:, i] * h + B_bar_x[:, i]
 y = einops.einsum(h, C[:, i, :], 'b d_in n, b n -> b d_in')
 ys.append(y)
 
 y = torch.stack(ys, dim=1)
 y = y + x * D
 return y
 
 
 class ResidualBlock(nn.Module):
 def __init__(self, args: ModelArgs):
 """Simple block wrapping Mamba block with normalization and residual connection."""
 super().__init__()
 self.args = args
 self.mixer = MambaBlock(args)
 self.norm = RMSNorm(args.d_model)
 
 def forward(self, x):
 output = self.mixer(self.norm(x)) + x
 return output
 
 
 """
 用多个Mamba块组成的模型
 """
 class Mamba(nn.Module):
 def __init__(self, args: ModelArgs):
 super().__init__()
 self.args = args
 
 self.embedding = nn.Embedding(args.vocab_size, args.d_model)
 self.layers = nn.ModuleList([ResidualBlock(args) for _ in range(args.n_layer)])
 self.norm_f = RMSNorm(args.d_model)
 
 self.lm_head = nn.Linear(args.d_model, args.vocab_size, bias=False)
 self.lm_head.weight = self.embedding.weight
 
 
 
 def forward(self, input_ids):
 x = self.embedding(input_ids)
 for layer in self.layers:
 x = layer(x)
 x = self.norm_f(x)
 logits = self.lm_head(x)
 return logits
 
 
 @staticmethod
 def from_pretrained(pretrained_model_name: str):
 """
 在huggingface的transformers库里找预训练好的模型
 
 Args:
 pretrained_model_name: One of
 * 'state-spaces/mamba-2.8b-slimpj'
 * 'state-spaces/mamba-2.8b'
 * 'state-spaces/mamba-1.4b'
 * 'state-spaces/mamba-790m'
 * 'state-spaces/mamba-370m'
 * 'state-spaces/mamba-130m'
 Returns:
 model: Mamba model with weights loaded
 
 """
 from transformers.utils import WEIGHTS_NAME, CONFIG_NAME
 from transformers.utils.hub import cached_file
 
 def load_config_hf(model_name):
 resolved_archive_file = cached_file(model_name, CONFIG_NAME,
 _raise_exceptions_for_missing_entries=False)
 return json.load(open(resolved_archive_file))
 
 
 def load_state_dict_hf(model_name, device=None, dtype=None):
 resolved_archive_file = cached_file(model_name, WEIGHTS_NAME,
 _raise_exceptions_for_missing_entries=False)
 return torch.load(resolved_archive_file, weights_only=True, map_location='cpu', mmap=True)
 
 config_data = load_config_hf(pretrained_model_name)
 args = ModelArgs(
 d_model=config_data['d_model'],
 n_layer=config_data['n_layer'],
 vocab_size=config_data['vocab_size']
 )
 model = Mamba(args)
 
 state_dict = load_state_dict_hf(pretrained_model_name)
 new_state_dict = {}
 for key in state_dict:
 new_key = key.replace('backbone.', '')
 new_state_dict[new_key] = state_dict[key]
 model.load_state_dict(new_state_dict)
 
 return model
 
 
 class RMSNorm(nn.Module):
 def __init__(self,
 d_model: int,
 eps: float = 1e-5):
 super().__init__()
 self.eps = eps
 self.weight = nn.Parameter(torch.ones(d_model))
 
 def forward(self, x):
 output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight
 return output
 
 
 if __name__ == '__main__':
 def generate(model,
 tokenizer,
 prompt: str,
 n_tokens_to_gen: int = 50,
 sample: bool = True,
 top_k: int = 40):
 model.eval()
 
 input_ids = tokenizer(prompt, return_tensors='pt').input_ids
 
 for token_n in range(n_tokens_to_gen):
 with torch.no_grad():
 indices_to_input = input_ids
 next_token_logits = model(indices_to_input)[:, -1]
 
 probs = F.softmax(next_token_logits, dim=-1)
 (batch, vocab_size) = probs.shape
 
 if top_k is not None:
 (values, indices) = torch.topk(probs, k=top_k)
 probs[probs < values[:, -1, None]] = 0
 probs = probs / probs.sum(axis=1, keepdims=True)
 
 if sample:
 next_indices = torch.multinomial(probs, num_samples=1)
 else:
 next_indices = torch.argmax(probs, dim=-1)[:, None]
 
 input_ids = torch.cat([input_ids, next_indices], dim=1)
 
 output_completions = [tokenizer.decode(output.tolist()) for output in input_ids][0]
 return output_completions
 
 pretrained_model_name = 'state-spaces/mamba-370m'
 
 from transformers import AutoTokenizer
 model = Mamba.from_pretrained(pretrained_model_name)
 tokenizer = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b')
 print(generate(model, tokenizer, 'Mamba is the'))
 
 |